Identify catalytic triads of serine hydrolases by support vector machines.

نویسندگان

  • Yu-dong Cai
  • Guo-Ping Zhou
  • Chin-Hung Jen
  • Shuo-Liang Lin
  • Kuo-Chen Chou
چکیده

The core of an enzyme molecule is its active site from the viewpoints of both academic research and industrial application. To reveal the structural and functional mechanism of an enzyme, one needs to know its active site; to conduct structure-based drug design by regulating the function of an enzyme, one needs to know the active site and its microenvironment as well. Given the atomic coordinates of an enzyme molecule, how can we predict its active site? To tackle such a problem, a distance group approach was proposed and the support vector machine algorithm applied to predict the catalytic triad of serine hydrolase family. The success rate by jackknife test for the 139 serine hydrolases was 85%, implying that the method is quite promising and may become a useful tool in structural bioinformatics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of activated serine-containing catalytic triads with atomic level accuracy

A challenge in the computational design of enzymes is that multiple properties, including substrate binding, transition state stabilization and product release, must be simultaneously optimized, and this has limited the absolute activity of successful designs. Here, we focus on a single critical property of many enzymes: the nucleophilicity of an active site residue that initiates catalysis. We...

متن کامل

STAGE-DISCHARGE MODELING USING SUPPORT VECTOR MACHINES

Establishment of rating curves are often required by the hydrologists for flow estimates in the streams, rivers etc. Measurement of discharge in a river is a time-consuming, expensive, and difficult process and the conventional approach of regression analysis of stage-discharge relation does not provide encouraging results especially during the floods. P

متن کامل

Mining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM

Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...

متن کامل

Identification and Adaptive Position and Speed Control of Permanent Magnet DC Motor with Dead Zone Characteristics Based on Support Vector Machines

In this paper a new type of neural networks known as Least Squares Support Vector Machines which gained a huge fame during the recent years for identification of nonlinear systems has been used to identify DC motor with nonlinear dead zone characteristics. The identified system after linearization in each time span, in an online manner provide the model data for Model Predictive Controller of p...

متن کامل

A Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels

The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of theoretical biology

دوره 228 4  شماره 

صفحات  -

تاریخ انتشار 2004